The PHENIX Detector

J/Ψ→μ⁺μ[−] in CuCu 200 GeV

J/Ψ clearly seen in LVL2 filtered events:

Results
obtained in
semi-real time!
(less than 2
days from data
to go through
LVL2,
calibration, and
production).

(~300 μb⁻¹ processed through LVL2 and reconstruction, ~400 J/Y per arm)

J/Ψ→e+e- in CuCu 200 GeV

J/Ψ also seen in central arm data:

Results
obtained in
semi-real time!
(less than 2
days from data
to go through
LVL2,
calibration, and
production).

(~350 μb⁻¹ processed through LVL2 and reconstruction,~130 events in peak)

You say tomato...

- The PHENIX request in the beam use proposal (BUP) was for 7nb⁻¹ delivered luminosity.
 - "Delivered" means luminosity useable by the experiment
 - BUP assumes 0.7 for vertex cut, 0.6 for PHENIX duty cycle
 - This gives the PHENIX goal of 2.9 nb⁻¹.
- The PHENIX minimum bias trigger is the BBC LL1.
 - Sees ~90% of the CuCu inelastic cross section
 - $(3.228 \text{ barns } \times 0.9 = 2.91 \text{ barns})$
 - We believe the ZDC sees ~90% of the BBC LL1 cross section
 - $(2.91 \text{ barns } \times 0.9 = 2.62 \text{ barns})$
 - Use CAD nominal value of 2.5 barns when we report ZDCNS luminosity
 - We report "live" luminosity (seen by DAQ)

200GeV CuCu Integrated Luminosity

Converting to RHIC Delivered

- We need two numbers to convert RHIC delivered to PHENIX sampled:
 - The 1.14 nb⁻¹ of ZDCNS corresponds to 0.668 nb⁻¹ BBC LL1
 - Conversion factor 0.59 (approx. the PHENIX vertex cut)
 - Since Jan 18th, RHIC delivered ~2.8 nb⁻¹ ZDCNS while PHENIX sampled 1.14 nb⁻¹

Conversion factor 0.41 (This is NOT the PHENIX duty cycle!)

• So, 2.9 nb⁻¹ of PHENIX BBC LL1 corresponds to a "RHIC delivered" number of:

$$2.9 \text{ nb}^{-1} \times \frac{1}{0.41 \times 0.59} = 12.0 \text{ nb}^{-1} + 2 \text{ nb}^{-1} = 14 \text{ nb}^{-1}$$

(Jan. 11th offset)

What PHENIX Needs...

- While current projections look promising, we need to work to get an additional "safety factor" to insure we reach our goals:
 - Suggest that weekday day-shift machine development continue through Feb 11th
 - Focus on increasing luminosity w/o "dramatic" changes
 - bunch intensity
 - 37x37 to 40x40, maybe higher?
 - PHENIX rare triggers good to ~90kHz ZDC rate
 - From Feb. 14th through the end of the run the focus shifts to reproducibility of stores and duty cycle
 - Machine development two day shifts per week/ as needed
 - The above suggestions serve two purposes
 - Maximize the probability of reaching our goals even with "disasters"
 - Keep the machine tuned for optimal performance

62 GeV CuCu?

- PHENIX is <u>very interested</u> in a low-energy CuCu run, provided:
 - PHENIX has reached the 200 GeV goal of 2.9nb⁻¹.
 - Currently projected ~50 days after Jan 11th physics start (March 2nd)
 - There is sufficient time allocated to integrate a comparable "pp equivalent" luminosity:

$$\int Ldt \Big|_{pp \text{ equivalent}} = A \times B \int Ldt \Big|_{A+B}$$

- AuAu pp equivalent luminosity at 62 GeV was 0.36 pb⁻¹
- Assuming <u>current</u> CuCu 200 GeV luminosity (~415 μb/week):
 - Drop a factor of ~10 for lower energy
 - "pp equivalent" = $63 \times 63 \times 41.5 = 0.165 \text{ pb}^{-1} / \text{week}$
 - Need two weeks of running plus three days setup time

BACKUP

Optimal Store Length

